Numerical Studies of Discrete Approximations to the Allen--Cahn Equation in the Sharp Interface Limit

نویسندگان

  • Jian Zhang
  • Qiang Du
چکیده

The numerical approximations to the Allen–Cahn type diffuse interface models are studied, with a particular focus on their performance in the sharp interface limit and the effectiveness of high order discretization schemes. Different spatial discretizations of an energy functional in the diffuse interface framework are compared first. Discretizations of the time-dependent equation using various different time-stepping schemes and an adaptive finite element spatial approximations are then analyzed. Assessments of the numerical accuracy in different parameter regimes are carried out. The analysis and computational findings provide insight on the effectiveness of the discretization schemes and offer guidance to parameter choices when numerical simulations are conducted within the diffuse interface framework.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite Element Methods for the Stochastic Allen-Cahn Equation with Gradient-type Multiplicative Noise

This paper studies finite element approximations of the stochastic Allen–Cahn equation with gradient-type multiplicative noise that is white in time and correlated in space. The sharp interface limit—as the diffuse interface thickness vanishes—of the stochastic Allen–Cahn equation is formally a stochastic mean curvature flow which is described by a stochastically perturbed geometric law of the ...

متن کامل

Analysis of finite element approximations of a phase field model for two-phase fluids

This paper studies a phase field model for the mixture of two immiscible and incompressible fluids. The model is described by a nonlinear parabolic system consisting of the nonstationary Stokes equations coupled with the Allen-Cahn equation through an extra phase induced stress term in the Stokes equations and a fluid induced transport term in the Allen-Cahn equation. Both semi-discrete and ful...

متن کامل

Sharp-Interface Limit of the Allen-Cahn Action Functional in One Space Dimension

We analyze the sharp-interface limit of the action minimization problem for the stochastically perturbed Allen-Cahn equation in one space dimension. The action is a deterministic functional which is linked to the behavior of the stochastic process in the small noise limit. Previously, heuristic arguments and numerical results have suggested that the limiting action should “count” two competing ...

متن کامل

A Posteriori Error Estimates for Finite Element Approximations of the Cahn-hilliard Equation and the Hele-shaw Flow

This paper develops a posteriori error estimates of residual type for conforming and mixed finite element approximations of the fourth order Cahn-Hilliard equation ut + ∆ ` ε∆u− ε−1f(u) ́ = 0. It is shown that the a posteriori error bounds depends on ε−1 only in some low polynomial order, instead of exponential order. Using these a posteriori error estimates, we construct an adaptive algorithm f...

متن کامل

The existence of global attractor for a Cahn-Hilliard/Allen-Cahn‎ ‎equation

In this paper, we consider a Cahn-Hillard/Allen-Cahn equation. By using the semigroup and the classical existence theorem of global attractors, we give the existence of the global attractor in H^k(0

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 31  شماره 

صفحات  -

تاریخ انتشار 2009